TEXT BOOK EXERCISE 9.4

- Q. 1. Find the lateral and total surface area of the cuboid having dimensions:
 - (i) $6 \text{ cm} \times 5 \text{ cm} \times 4 \text{ cm}$
 - (ii) $15 \text{ m} \times 12 \text{ m} \times 8 \text{ m}$
 - (iii) $8 \text{ m} \times 10 \text{ m} \times 8 \text{ m}$.

Solution. (i) Given: $6 \text{ cm} \times 5 \text{ cm} \times 4 \text{ cm}$ Here, l = 6 cm, b = 5 cm and h = 4 cm Lateral surface area of the cuboid

$$= 2(l+b) \times h$$

=
$$2 (6 + 5) \times 4 \text{ cm}^2$$

= $88 \text{ cm}^2 \text{ Ans.}$

$$= 88 \text{ cm}^2 \text{ Ans.}$$

Total surface area of the cuboid

 $= 2(l \times b + b \times h + h \times l)$

= $2(6 \times 5 + 5 \times 4 + 4 \times 6) \text{ cm}^2$ $= 2 (30 + 20 + 24) \text{ cm}^2$

 $= 2 (74) \text{ cm}^2 = 148 \text{ cm}^2 \text{ Ans.}$

(ii) Given: 15 m \times 12 m \times 8 m

Here, l = 15 m, b = 12 m and h = 8 m Lateral surface area of the cuboid

 $= 2(l+b) \times h = 2(15+12) \times$

 8 m^2

 $= 2 \times 27 \times 8 = 432 \text{ m}^2 \text{ Ans.}$

Total surface area of the cuboid

 $= 2(l \times b + b \times h + h \times l)$

 $= 2 (15 \times 12 + 12 \times 8 + 8 \times 15)$

 $= 2 (180 + 96 + 120) \text{ m}^2$

 $= 792 \text{ m}^2 \text{ Ans.}$

(iii) Given: $8m \times 10 m \times 8m$

Here, l = 8 m, b = 10 m and h = 8 m

Lateral surface area = $2(l+b) \times h$

 $= 2 (8 + 10) \times 8 \text{ m}^2$

 $= 2 \times 18 \times 8 \text{ m} = 288 \text{ m}^2$

Total surface area of the cuboid

 $= 2(l \times b + b \times h + h \times l)$

 $= 2 (8 \times 10 + 10 \times 8 + 8 \times 8) \text{ m}^2$

 $= 2 (80 + 80 + 64) \text{ m}^2 = 448 \text{ m}^2$

Q. 2. Find the lateral and total surface area of the cubes having edge:

(i) 8 cm (ii) 12 m

(iii) 15 mm.

Solution. (i) Edge of cube (l) = 8 cm

Lateral surface area of cube

 $=4l^2=4\times(8)^2$ cm²

 $= 4 \times 64 \text{ cm}^2 = 256 \text{ cm}^2 \text{ Ans.}$

Total surface area of cube

 $= 6l^2 = 6 \times (8)^2 \text{ cm}^2$

 $= 6 \times 64 \text{ cm}^2 = 384 \text{ cm}^2 \text{ Ans.}$

(ii) Edge of the cube (l) = 12 m

Lateral surface area of cube

 $= 4l^2 = 4 \times (12)^2 \text{ m}^2$

 $= 4 \times 144 \text{ m}^2 = 576 \text{ m}^2 \text{ Ans.}$

Total surface area of cube

 $= 6l^2 = 6 \times (12)^2 \text{ m}^2$

 $= 6 \times 144 \text{ m}^2 = 864 \text{ m}^2 \text{ Ans.}$

(iii) Edge of the cube (l) = 15 mm

Lateral surface area of cube

 $= 4l^2 = 4 \times (15)^2 \text{ mm}^2$

 $= 4 \times 225 \text{ mm}^2$

= 900 mm² Ans.

Total surface area of cube

 $= 6l^2 = 6 \times (15)^2 \text{ mm}^2$

 $= 6 \times 225 \text{ mm}^2$

 $= 1350 \text{ mm}^2 \text{ Ans.}$

Q. 3. Find the side of a cube whose surface area is 2400 cm^2 .

Solution. Surface area of cube = 2400 cm²

 \therefore 6 (side)² = 2400

 \Rightarrow (side)² = $\frac{2400}{6}$ = 400

 \Rightarrow side = $\sqrt{400}$ cm = 20 cm Ans.

Q. 4. Neetu painted the outside of a cabinet of measure $3m \times 2m \times 1.5$ m. How much surface area she covered if she painted all cabinet except bottom.

Solution. Here, l = 3 m, b = 2 m and h = 1.5 mSurface area of the cabinet to point except bottom

$$= l \times b + 2 (l + b) \times l$$

 $= (3 \times 2) \text{ m}^2 + 2 (3 + 2) \times 1.5 \text{ m}^2$

 $= 6 \text{ m}^2 + 2 \times 5 \times 1.5 \text{ m}^2$

 $= 6 \text{ m}^2 + 15 \text{ m}^2 = 21 \text{ m}^2 \text{ Ans.}$

Q. 5. Ashima painted her room of measure $15 \text{ m} \times 12 \text{ m} \times 7 \text{ m}$. How much surface area did he cover if he painted all except the floor ?

Solution. Length of the room (l) = 15 m

Breadth of the room (b) = 12 m

Height of the room (h) = 7 m

Area of the room to be painted except floor

 $= 1 \times b + 2(b+l) \times h$

 $= 15 \times 12 \text{ m}^2 + 2 (12 + 15) \times 7 \text{ m}^2$

180 m² + 2 × 27 × 7 m²

 $= 180 \text{ m}^2 + 378 \text{ m}^2$

 $= 558 \text{ m}^2 \text{ Ans.}$

Q. 6. Manu wants her room to be painted. If the measures of her room is 20 m \times 12 m \times 15 m then find the cost of painting the room except the floor at ₹ 6 per m²?

Solution. Length of the room (l) = 20 m

Breadth of the sum (b) = 12 m

Height of the room (h) = 15 m

Area of room to be painted except floor

$$= l \times b + 2 (l \times b) \times h$$

$$= 20 \times 12 + 2 (20 + 12) \times 15 \text{ m}^2$$

$$= 240 \text{ m}^2 + 64 \times 15 \text{ m}^2$$

$$= 240 \text{ m}^2 + 960 \text{ m}^2 = 1200 \text{ m}^2.$$

Cost of painting the room = $1200 \times ? 2$ = ? 7200 Ans.

Q. 7. A suitcase with measurement 80 cm \times 48 cm \times 24 cm is to be covered with a cloth. How many metres of cloth of width 96 cm is required to cover the suitcase?

Solution. Here, Length of suitcase (l) = 80 cm

Breadth of suitcase (b) = 48 cm

Height of suitcase (h) = 24 cm

Surface area of suitcase

$$= 2 (l \times b + b \times h + h \times l)$$

 $80) \text{ cm}^2$

$$= 2 (3840 + 1152 + 1920) \text{ cm}^2$$

$$= 2 \times 6912 \text{ cm}^2 = 13824 \text{ cm}^2$$

Length of the cloth of width 96 cm required to cover suitcase

$$= \frac{13824}{96} \text{ cm} = 144 \text{ cm Ans.}$$

Q. 8. What will happen to the surface area of a cube if its edge is (i) tripled (ii) halved ?

Solution. Let each edge of the cube = l

- \therefore Its surface area = $6l^2$ square unit
- (i) When the edge tripled
- \therefore Edge of new cube = 3l unit

New surface area of cube = $6 \times (3l)^2$ square unit

=
$$6 \times 9l^2 = 54l^2$$
 square unit

Hence, if the edge of the cube is tripled,

$$= 9 \times (6l)^2$$

= 9 × Surface area of lesser cube

Hence, if the edge of the cube is tripled, then the surface area increased by 9 times. (ii) New edge of the cube = $\frac{1}{2}l$ unit Surface area of the new cube

=
$$6\left(\frac{1}{2}l\right)^2$$
 square unit

=
$$6 \times \frac{1}{4} l^2$$
 square unit = $\frac{1}{4} (l^2)$

Hence, if edge of the cube is halved the area of new cube is one fourth.

Q. 9. Three cubes each of side 5 cm are joined end to end. Find the surface area of the cuboid so formed.

Solution. Each side of cube = 5 cm

When three cubes are joined then,

Length of cuboid = 5 cm + 5 cm + 5 cm

= 15 cm

Breadth of cuboid = 5 cm

Height of cuboid = 5 cm

Thus, the surface area of cuboid

$$= 2(15 \times 5 + 5 \times 5 + 5)$$

 \times 15) cm²

$$= 2 (75 + 25 + 75) \text{ cm}^2$$

$$= 350 \text{ cm}^2 \text{ Ans.}$$

Q. 10. Find the curved and total surface area of a cylinder whose dimensions are :

- (i) r = 7 cm, h = 20 cm
- (ii) r = 14 cm, h = 15 m
- (iii) diameter = 7 cm, h = 12 cm.

Solution. (i) Here, r = 7 cm, h = 20 cm

Curved surface area of the cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 7 \times 20 \text{ cm}^2$$

 $= 880 \text{ cm}^2 \text{ Ans.}$

Total surface area of the cylinder $= 2\pi r (h + r)$

$$= 2 \times \frac{22}{7} \times 7(20 + 7) \text{ cm}^2$$

 $= 44 \times 27 \,\mathrm{cm}^2$

 $= 1188 \text{ cm}^2 \text{ Ans.}$

(ii) Here, r = 14 cm, h = 15 cm Curved surface area of the cylinder

=
$$2\pi rh$$
 = $2 \times \frac{22}{7} \times 14 \times 15 \text{ m}^2$
= $1320 \text{ cm}^2 \text{ Ans.}$

Total surface area of cylinder

=
$$2\pi r (h + r)$$

= $2 \times \frac{22}{7} \times 14 \times (15 + 14)$
= $2 \times \frac{22}{7} \times 14 \times 29$
= $2552 \text{ cm}^2 \text{ Ans.}$

(iii) Here, diameter = 7 cm Curved surface area of cylinder

=
$$2\pi rh$$
 = $2 \times \frac{22}{7} \times \frac{7}{2} \times 12 \text{ cm}^2$
= $264 \text{ cm}^2 \text{ Ans.}$

Total surface area of cylinder

$$= 2\pi r (h + r) = 2 \times \frac{22}{7} \times \frac{7}{2}$$

$$\left(\frac{7}{2} + 12\right) \text{ cm}^2$$

$$= 22 + \left(\frac{7 + 24}{2}\right) \text{cm}^2$$

$$= 22 \times \frac{31}{2} \text{ cm}^2 = 341 \text{ cm}^2 \text{ Ans.}$$

Q. 11. Find the curved surface area of a cylinder whose circumference of the base is 77 cm and height is 12 cm.

Solution. Circumference of the base = 77 cm

Height = 12 cm

Curved surface area of cylinder

= Circumference $\times h$

 $= 77 \times 12 \text{ cm}^2$

 $= 924 \text{ cm}^2 \text{ Ans.}$

Q. 12. Find the radius of cylinder whose curved surface area is 1056 cm² and height 12 cm.

Solution. Curved surface area of cylinder

 $= 1056 \text{ cm}^2$

Height of the cylinder = 12 cm $2\pi rh = 1056$

$$2 \times \frac{22}{7} \times r \times 12 = 1056$$

$$r = \frac{1056 \times 7}{44 \times 12}$$

Q. 13. Find the height of cylinder whose radius is 7 cm and total surface area is 968 cm².

Radius (r) = 7 cm Solution.

Total surface area = 968 cm^2

$$2\pi r \left(h+r\right) = 968$$

$$\Rightarrow 2 \times \frac{22}{7} \times 7 (h+7) = 968$$

$$44 (h+7) = 968$$

$$h+7 = \frac{968}{24} = 22$$

$$h = 22 - 7 = 15$$
 cm

Hence, height of cylinder = 15 cm

O. 14. A cylindrical pipe open from both sides has radius 21 cm and height 50 cm. What is its surface area?

Solution. Here, radius (r) = 21 cm

Height (h) = 50 cm

Surface area of cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 21 \times 21$$

50 cm

 $= 6600 \text{ cm}^2 \text{ Ans.}$

Q. 15. A road roller takes 950 complete revolutions to move once over to level a road. Find the area of road leveled if the diameter of road roller is 84 cm and length is 1 m.

Solution. Radius of the road roller (r)

$$=\frac{84}{2}=42 \text{ cm}$$

Height of the road roller (h) = 1 m = 100 cm

Curved surface area of the cylindrical road roller = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 42 \times 100 \text{ cm}^2$$
$$= 26400 \text{ cm}^2$$

.. Area covered in 1 revolution

$$= 26400 \text{ cm}^2 = \frac{26400}{10,000} \text{m}^2$$
$$= 2.64 \text{ m}^2$$

Area of road = Area covered in 950 revolutions = $950 \times 2.64 \text{ m}^2$

 $= 2508 \text{ m}^2 \text{ Ans.}$

Q. 16. A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. What is cost of tank if rate of metal sheet is ₹ 20 per m².

Solution. Here, radius of cylindrical tank = 7 m Height of the cylindrical tank = 3 m Total surface area of the cylindrical tank = $2\pi r (h + r)$

$$= 2 \times \frac{22}{7} \times 7 \times (3 + 7) \text{ m}^2$$

= 44 × 10 m² = 440 m²

Rate of metal sheet
= ₹ 20 per m²

= ₹ 20 per m ∴ Cost of the tank

= ₹ 20 × 440 = ₹ 8800 Ans.

Q. 17. Multiple Choice Questions:

- (i) Lateral surface area of cube is:
 - (a) $6l^2$
- (b) $5l^2$
- (c) $4l^2$
- (d) $2l^2$.
- (ii) Curved surface area of cylinder is:
 - (a) $2\pi rh$
- \cdot (b) πrh
- (c) $2\pi r$
- (d) $\pi r^2 h$.
- (iii) If the edge of a cube is doubled then what will happen to the surface area?
 - (a) 2 times
- (b) 4 times
- (c) 3 times
- (d) Half.
- **Ans.** (i) (c) $4l^2$
- (ii) (a) 2πrh
- (iii) (b) 4 times.