TEXT BOOK EXERCISE 9.2

Q. 1. Find the area of the quadrilaterals given below in figure 9.15 (Textbook).

(vi)

Solution.

(i) Here, d = AC = 6 cm $h_1 = 5 \text{ cm and } h_2 = 3 \text{ cm}$ Arca of quadrilateral ABCD

$$= \frac{1}{2}d(h_1 + h_2)$$

$$= \frac{1}{2} \times 6 \times (5+3) \text{ cm}^2$$

$$= \frac{1}{2} \times 6 \times 8 \text{ cm}^2$$

$$= 24 \text{ cm}^2 \text{ Ans.}$$

(ii) Here, $d_1 = 7$ cm and $d_2 = 6$ cm

Area of rhombus =
$$\frac{1}{2} \times d_1 \times d_2$$

= $\frac{1}{2} \times 7 \times 6$ cm²
= 21 cm² Ans.

(iii) Here, Base = 8 cmHeight = 3 cm

Area of triangle $=\frac{1}{2} \times \text{Base} \times \text{Height}$ $=\frac{1}{2} \times 8 \times 3 \text{ cm}^2 = 12 \text{ cm}^2$

Area of the parallelogram = $2 \times$ Area of triangle = $2 \times 12 \text{ cm}^2 = 24 \text{ cm}^2$

Ans

(iv) Here, given parallel sides are a = 9 cm, b = 7 cm and h = 6 cm

Area of trapezium =
$$\frac{1}{2}(a + b) \times h$$

= $\frac{1}{2}(9 + 7) \times 6 = \frac{1}{2} \times 16$
 $\times 6 \text{ cm}^2$

= 48 cm² Ans.

(v) Here, given parallel sides are a = 10 cm, b = 5 cm and h = 5 cm.

Area of trapezium =
$$\frac{1}{2}(a+b) \times h$$

= $\frac{1}{2}(10+5) \times 5$ cm²
= $\frac{1}{2} \times 15 \times 5$ cm²
= $\frac{75}{2}$ cm² = 37.5 cm².

(vi) Here, given parallel sides are a = 8 cm, b = 6 cm and h = 4 cm

Area of trapezium = $\frac{1}{2} \times (a+b) \times h$ = $\frac{1}{2} \times (8+6) \times 4$ cm² = $\frac{1}{2} \times 14 \times 4$ cm² = 28 cm² Ans.

Q. 2. The area of a rhombus is 320 cm². If length of its one diagonal is 16 cm. Find the length of the other diagonal.

Solution. Here, area of rhombus = 320 cm^2 Length of one of its diagonal $(d_1) = 16 \text{ cm}$ Let length of the other diagonal = d_2

Area of rhombus = $\frac{1}{2}$ × Product of the diagonals = $\frac{1}{2}d_1 \times d_2$

$$320 = \frac{1}{2} \times 16 \times d_2$$
i.e. $8d_2 = 320$
So, $d_2 = \frac{320}{8} = 40 \text{ cm}$

Hence, length of other diagonal = 40 cm Ans.

Q. 3. One diagonal of a quadrilateral field is 24 m and the altitudes dropped on it from the opposite vertices are 8 m and 13 m. Find the area of the field [fig. 9.16 (Textbook)].

Solution. Here, $h_1 = 13 \text{ m}$, $h_2 = 8 \text{ m}$ and d = 24 m

Area of the quadrilateral = $\frac{1}{2}d(h_1 + h_2)$

$$= \frac{1}{2} \times 24 \times (13 + 8) \text{ m}^2$$
$$= 12 \times 21 \text{ m}^2 = 252 \text{ m}^2$$

Hence, area of the field = 252 m^2 Ans.

Q. 4. The diagonals of a rhombus are 7.5 cm and 12 cm. Find its area.

Solution. Here, $d_1 = 7.5$ cm, $d_2 = 12$ cm

Area of the rhombus = $\frac{1}{2} \times d_1 \times d_2$ = $\frac{1}{2} \times 7.5 \times 12 \text{ cm}^2$ = 45 cm^2

Hence, area of the rhombus = $45 \text{ cm}^2 \text{ Ans.}$

Q. 5. Find the area of a square whose length of diagonal is 10 cm.

Solution. Here, length of diagonal (d) = 10 cm

Area of square =
$$\frac{1}{2} \times d^2 = \frac{1}{2} \times (10)^2 \text{ cm}^2$$

= $\frac{1}{2} \times 100 \text{ cm}^2 = 50 \text{ cm}^2$

Hence, area of square = $50 \text{ cm}^2 \text{ Ans.}$

Q. 6. Find the area of a rhombus with side 8 cm and altitude 4.8 cm.

Solution. Here, side of the rhombus = 8 cm and altitude = 4.8 cm

Area of rhombus = side × altitude = $8 \times 4.8 \text{ cm}^2$ = 38.4 cm^2

Hence, area of rhombus = $38.4 \text{ cm}^2 \text{ Ans.}$

Q. 7. Find the area of rhombus whose side is 5 cm and whose altitude is 4.8 cm. If one of its diagonal is 8 cm. Find the length of other diagonal.

Solution. Here, side of rhombus = 5 cm and altitude = 4.8 cmArea of rhombus = $5 \times 4.8 \text{ cm}^2 = 24 \text{ cm}^2$

Also, area of rhombus = $\frac{1}{2}$ × Product of the diagonals

$$24 = \frac{1}{2} \times 8 \times d$$

$$\Rightarrow 8 \times d = 48$$

$$\Rightarrow d = \frac{48}{8} = 6 \text{ cm}$$

Hence, the length of the other diagonal = 6 cm Ans.

Q. 8. Find the area of a trapezium shaped field if the parallel sides are of length 250 m and 160 m and the distance between them is 100 m.

Solution. Length of parallel sides a = 250 m, b = 160 m

and Distance between them, h = 100 m

Area of trapezium =
$$\frac{1}{2} \times (a+b) \times h$$

= $\frac{1}{2} \times (250 + 160) \times 100 \text{ m}^2$
= $\frac{1}{2} \times 410 \times 100 \text{ m}^2$
= $20500 \text{ m}^2 \text{ Ans.}$

Q. 9. Find the other parallel side of trapezium if its area is 300 m². One parallel side is 15 m and distance between parallel sides is 15 m.

Solution. One parallel side of trapezium
= 15 m

Let other parallel side = a m

Distance between parallel sisdes (h) = 15 mArea of trapezium = 300 m^2

Area of trapezium = $\frac{1}{2}$ × Sum of parallel sides

$$\Rightarrow 300 = \frac{1}{2} \times (15 + d) \times 15$$

$$\Rightarrow (15+d) \times 15 = 600$$

$$\Rightarrow 15 + d = \frac{600}{15} = 40$$

$$d = 40 - 15 = 25 \text{ m}$$

Hence, the length of other parallel side = 25 m

Q. 10. Find the area of a trapezium whose parallel sides are 1 m and 1.2 m and perpendicular distance between them is 0.8

Solution. The parallel sides of the trapezium are a = 1 m, b = 1.2 m and perpendicular distance (d) = 0.8 m

Area of the trapezium = $\frac{1}{2} \times (a+b) \times h$ $=\frac{1}{2}(1+1.2)\times0.8 \text{ m}^2$ $=\frac{1}{2} \times 2.2 \times 0.8 \text{ m}^2$ $= 0.88 \text{ m}^2 \text{ Ans.}$

Q. 11. The floor of a building consists of 2400 tiles which are rhombus shaped having diagonals 45 cm and 32 cm in length. Find the total cost of polishing the floor, if the cost per m^2 is ≥ 4 .

Solution. Here, $d_1 = 45$ cm, $d_2 = 32$ cm

 \therefore Area of one tile = $\frac{1}{2}$ × Product of diagonals

$$= \frac{1}{2} \times d_1 \times d_2$$

=
$$\frac{1}{2} \times 45 \times 32 \text{ cm}^2$$

= $45 \times 16 \text{ cm}^2$
= 720 cm^2

Area of 2400 tiles = $2400 \times 720 \text{ cm}^2$

$$= \frac{2400 \times 720}{100 \times 100} \,\mathrm{m}^2$$
$$= 172.8 \,\mathrm{m}^2$$

Cost per $m^2 = ₹ 4$

Total cost of 172.8 $m^2 = ₹ 4 × 172.8$ = 691.20

Hence, total cost of polishing the floor = ₹ 691.20 Ans.

Q. 12. Multiple Choice Questions:

- (i) Find the area of a rhombus whose diagonals are 4 cm and 6 cm.
 - (a) 24 cm^2 (b) 12 cm^2

 - (c) 10 cm^2 (d) 18 cm^2 .
- (ii) Find the area of a square whose diagonal is d.
 - (a) d^2 (b) $\frac{1}{2}d$
- - (c) $2d^2$ (d) $\frac{1}{2}d^2$.
- (iii) Find the area of the given figure.

- (a) 70 cm^2
- (b) 180 cm^2
- (c) 90 cm^2
- (d) 120 cm^2 .

Ans. (i) (b) 12 cm^2 (ii) (d) $\frac{1}{2}d^2$ (iii) (a) 70 cm^2